Monday, February 10, 2014




Can Migrating Corals Outpace Ocean Warming and Acidification?

Discussing:  Couce, E., Ridgwell, A. and Hendy, E.J. 2013. "Future habitat suitability for coral reef ecosystems under global warming and ocean acidification". Global Change Biology 19: 3592-3606.

According to Couce et al. (2013), "there is concern that the growing frequency and severity of mass bleaching episodes may lead to species composition shifts and functional collapse in coral reefs in the near future." On the other hand, they also note global warming "has the potential to improve currently marginal environmental conditions and extend the range of tropical coral reefs into higher latitudes," as is "demonstrated in the fossil record in response to warmer geological periods (e.g., Lighty et al., 1978; Veron, 1992; Precht and Aronson, 2004; Greenstein and Pandolfi, 2008; Woodroffe et al., 2010; Kiessling et al., 2012)."

But what if ocean acidification occurs concurrently?

To investigate this potential situation, Couce et al. employed "a suite of statistical models based on the environmental factors thought to be limiting to the present equilibrium distribution of shallow-water coral reefs, perturbing them with Earth System Model projected future sea surface temperatures and aragonite saturation changes (the simulations used in Turley et al., 2010)," while considering "a range of potential future CO2 emissions scenarios," but focusing on "the consequences of the 'A2' scenario (characterized by regionally oriented economic development and high population growth, expecting ca. 850 ppm CO2 by 2100)."

After all was said and done, the three UK researchers found, "contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific." And they note, in this regard, that "these results are consistent with fossil evidence of range expansions during past warm periods."

In terms of the nitty-gritty here-and-now, Couce et al. conclude by stating that their results "present important implications for future coral reef management, as they suggest that more emphasis should be placed on conservation efforts on marginal reefs as they are not necessarily a 'lost cause'."

SOURCE


Monday, February 3, 2014


 Coral reefs in Palau surprisingly resistant to naturally acidified waters
   

          
Ocean researchers working on the coral reefs of Palau in 2011 and 2012 made two unexpected discoveries that could provide insight into corals' resistance and resilience to ocean acidification, and aid in the creation of a plan to protect them.
               
 The team collected water samples at nine points along a transect that stretched from the open ocean, across the barrier reef, into the lagoon and then into the bays and inlets around the Rock Islands of Palau, in the western Pacific Ocean. With each location they found that the seawater became increasingly acidic as they moved toward land.

"When we first plotted up those data, we were shocked," said lead author Kathryn Shamberger, then a postdoctoral scholar at Woods Hole Oceanographic Institution (WHOI) and a chemical oceanographer. "We had no idea the level of acidification we would find. We're looking at reefs today that have levels that we expect for the open ocean in that region by the end of the century."

Shamberger conducted the fieldwork in Palau with other researchers from the laboratory of WHOI biogeochemist Anne Cohen as well as scientists from the Palau International Coral Reef Center (PICRC).

While ocean chemistry varies naturally at different locations, it is changing around the world due to increased levels of carbon dioxide (CO2) in the atmosphere. The ocean absorbs atmospheric CO2, which reacts with seawater, lowering its overall pH, and making it more acidic. This process also removes carbonate ions needed by corals and other organisms to build their skeletons and shells. Corals growing in low pH conditions, both in laboratory experiments that simulate future conditions and in other naturally low pH ocean environments, show a range of negative impacts. Impacts can include juveniles having difficulty constructing their skeletons, fewer varieties of corals, less coral cover, more algae growth, and more porous corals with greater signs of erosion from other organisms.

The new research, published in Geophysical Research Letters, a journal of the American Geophysical Union, explains the natural biological and geomorphological causes of the more acidic water near Palau's Rock Islands and describes a surprising second finding – that the corals living in that more acidic water were unexpectedly diverse and healthy. The unusual finding, which is contrary to what has been observed in other naturally low pH coral reef systems, has important implications for the conservation of corals in all parts of the world.

"When you move from a high pH reef to a low pH neighboring reef, there are big changes, and they are negative changes," said Cohen, a co-author on the paper and lead principal investigaor of the project. "However, in Palau where the water is most acidic, we see the opposite. We see a coral community that is more diverse, hosts more species, and has greater coral cover than in the non-acidic sites. Palau is the exception to the places scientists have studied."

Through analysis of the water chemistry in Palau, the scientists found the acidification is primarily caused by the shell building done by the organisms living in the water, called calcification, which removes carbonate ions from seawater. A second reason is the organisms' respiration, which adds CO2 to the water when they breathe.

"These things are all happening at every reef," said Cohen. "What's really critical here is the residence time of the sea water."

"In the Rock Islands, the water sits in the bays for a long time before being flushed out. This is a big area that's like a maze with lots of channels and inlets for the water to wind around," explained Shamberger. "Calcification and respiration are continually happening at these sites while the water sits there, and it allows the water to become more and more acidic. It's a little bit like being stuck in a room with a limited amount of oxygen – the longer you're in there without opening a window, you're using up oxygen and increasing CO2."

Ordinarily, she added pushing the analogy, without fresh air coming in, it gets harder and harder for living things to thrive, "yet in the case of the corals in Palau, we're finding the opposite.  "What we found is that coral cover and coral diversity actually increase as you move from the outer reefs and into the Rock Islands, which is exactly the opposite of what we were expecting."

The scientists' next steps are to determine if these corals are genetically adapted to low pH or whether Palau provides a "perfect storm" of environmental conditions that allows these corals to survive the low pH. "If it's the latter, it means if you took those corals out of that specific environment and put them in another low pH environment that doesn't have the same combination of conditions, they wouldn't be able to survive," said Cohen. "But if they're genetically adapted to low pH, you could put them anywhere and they could survive."

"These reef communities have developed under these conditions for thousands of years," said Shamberger, "and we're talking about conditions that are going to be occurring in a lot of the rest of the ocean by the end of the century. We don't know if other will be able to adapt to ocean acidification – the time scale might be too short."

The scientists are careful to stress that their finding in Palau is different from every other low pH environment that has been studied. "When we find a reef like Palau where the coral communities are thriving under low pH, that's an exception," said Cohen. "It doesn't mean coral reefs around the globe are going to be OK under ocean acidification conditions. It does mean that there are some coral communities out there – and we've found one – that appear to have figured it out. But that doesn't mean all coral reef ecosystems are going to figure it out."

"In Palau, we have these special and unique places where organisms have figured out how to survive in an acidified environment. Yet, these places are much more prone to local human impacts because of their closeness to land and because of low circulation in these areas," said co-author Yimnang Golbuu, CEO of the PICRC. "We need to put special efforts into protecting these places and to ensure that we can incorporate them into the Protected Areas Network in Palau."


http://phys.org/news/2014-01-coral-reefs-palau-surprisingly-resistant.html


Great Barrier Reef: Governments say world heritage site not in danger from development



Australia has argued it is making substantial progress on the United Nations' requests for better protection of the Great Barrier Reef and that it should not be listed among world heritage sites "in danger".

In a progress report to the UN World Heritage Committee, the federal and Queensland governments say the natural values the reef was protected for are still largely intact, although in parts - such as inshore areas south of Cooktown - they are declining.

The report was delivered to the UN on Saturday, a day after final approval was granted to dump in the reef's waters 3 million cubic metres of dredging sludge from the expansion of coal export terminals at Abbot Point.

The World Heritage Committee has threatened to put the reef on a list of world heritage sites considered "in danger" after becoming concerned in 2012 about the effect of numerous resource projects slated for the reef's coast.

Australia needs to show significant progress on UN recommendations for better reef management to avoid a downgrade. Tourism operators warn an "in danger" listing will damage the reef's international reputation and their businesses.

The governments' report points to several programs to reduce threats, including a sustainability strategy, water quality measures and a draft Queensland ports strategy.

Federal Environment Minister Greg Hunt said there was genuine improvement in reef indicators in regard to dugongs, turtles, seagrass and coral. The Coalition had rejected Labor's multiple new-port strategy and was containing development to five existing port areas, he said.

"It is a permanent task for every Australian government to protect and maintain the reef. Nobody can ever rest on that, but there should be no way the reef can and should be considered 'in danger'," Mr Hunt said.

Australian Coral Reef Society president Peter Mumby said many people had argued convincingly that the reef was in the worst shape since monitoring began. He said the progress report downplayed industrial development threats, including port and agriculture expansion, that could add as much as another 14 million tonnes a year of damaging sediment to reef waters.

University of Queensland coral reef ecologist Selina Ward said the Abbot Point decision was dangerous because the best modelling showed dumped sediment would drift to outer areas, damaging coral and seagrass.

The government progress report said extreme weather and climate change were the biggest threats to the reef. It also pointed to nutrient and sediment run-off from land clearing and agriculture, and associated spikes in crown-of-thorns starfish numbers.

It said pollution from other sources, including port development and dredging, "is minor but may be highly significant locally and over short time periods".

Queensland Resources Council chief executive Michael Roche said the governments' progress report had identified the port development impacts as being minor and temporary.

http://www.smh.com.au/environment/great-barrier-reef-governments-say-world-heritage-site-not-in-danger-from-development-20140202-31v3p.html